13 research outputs found

    EFFICIENT QUANTIZATION PARAMETER ESTIMATION IN HEVC BASED ON ρ-DOMAIN

    Get PDF
    International audienceThis paper proposes a quantization parameter estimation algorithm for HEVC CTU rate control. Several methods were proposed, mostly based on Lagrangian optimization combined with Laplacian distribution for transformed coeffi-cients. These methods are accurate but increase the encoder complexity. This paper provides an innovative reduced com-plexity algorithm based on a ρ-domain rate model. Indeed, for each CTU, the algorithm predicts encoding parameters based on co-located CTU. By combining it with Laplacian distri-bution for transformed coefficients, we obtain the dead-zone boundary for quantization and the related quantization pa-rameter. Experiments in the HEVC HM Reference Software show a good accuracy with only a 3% average bitrate error and no PSNR deterioration for random-access configuration

    Stratégies d'encodage pour codeur vidéo scalable

    No full text
    High Efficiency Video Coding (HEVC/H.265) is the latest video coding standard, finalized in Janua1y 2013 as the successor of Advanced Video Coding (AVC/H.264). Its scalable extension, called SHVC was released in October 2014 and enables spatial, bitdepth, color-gamut (CGS) and even standard scalability. SHVC is a good candidate for introducing new services thanks to backward compatibility features with legacy HEVC receivers through the base-layer (BL) stream and next generation ones through the BL+EL (enhancement layer). In addition, SHVC saves substantial bitrate with respect to simulcast coding (independent coding of layers) and is also considered by DVB for UHD introduction and included in ATSC-3 .0. In this context, the work of this thesis aims at designing efficient rate-control strategies for HEVC and its scalable extension SHVC in the context of new UHD formats introduction. First, we have investigated the p-domain approach which consists in linking the number of non-zero transfonned and quantized residual coefficients with the bitrate, in a linear way, to achieve straightforward rate-control. After validating it in the context of HEVC and SHVC codings, we have developed an innovative Coding Tree Unit (CTU)-level rate-control algorithm using the p-domain. For each CTU and its associated targeted bit rate, our method accurately estimates the most appropriate quantization parameter (QP) based on neighborhood indicators, with a bit rate error below 4%. Then, we have proposed a deterministic way of estimating the p-domain model which avoids the implementation of look-up tables. The proposed method enables accurate model estimation over 90%. Second, we have explored the impact of the bitrate ratio between layers on the SHVC performance for the spatial, CGS and SDR-to-HDR scalability. Based on statistical observations, we have built an adaptive rate control algorithms (ARC). We have first proposed an ARC scheme which optimizes coding performance by selecting the optimal ratio into a fixed ratio inte1val, under a global bitrate instruction (BL+EL). This method is adaptive and considers the content and the type of scalability. This first approach enables a coding gain of 4.25% compared to fixed-ratio encoding. Then, this method has been enhanced with quality and bandwidth constraints in each layer instead of considering a fixed interval. This second method has been tested on hybrid delivery of HD/UHD services and backward compatible SHVC encoding of UHDI -PI /UHDI -P2 services (DVB use-case) where it enables significant coding gains of 7.51% and 8.30%, respectively. Finally, the statistical multiplexing of SHVC programs has been investigated. We have proposed a first approach which adjusts both the global bit rate to allocate in each program and the ratio between BL and EL to optimize the coding performance. In addition, the proposed method smooths the quality variations and enforces the quality homogeneity between programs. This method has been applied to a database containing pre-encoded bitstreams and enables an overhead reduction from 11.01% to 7.65% compared to constant bitrate encoding, while maintaining a good accuracy and an acceptable quality variations among programs.High Efficiency Video Coding (HEVC/H.265) est la dernière norme de compression vidéo, finalisée en Janvier 20 13. Son extension scalable, SHVC, a été publiée en Octobre 2014 et supporte la scalabilité spatiale, en gamut de couleur (CGS) et même en norme de compression (AVC vers HEVC). SHVC peut être utilisée pour l'introduction de nouveaux services, notamment grâce à la rétrocompatibilité qu'elle apporte par la couche de base (BL) et qui est complétée par une couche d'amélioration (BL+EL) qui apporte les nouveaux services. De plus, SHVC apporte des gains en débit significatifs par rapport à l'encodage dit simulcast (l'encodage HEVC séparés). SHVC est considérée par DVB pour accompagner l'introduction de services UHD et est déjà incluse dans la norme ATSC-3.0. Dans ce contexte, l'objectif de la thèse est la conception de stratégies de régulation de débit pour les codeurs HEVC/SHVC lors de l'introduction de nouveaux services UHD. Premièrement, nous avons étudié l'approche p-domaine qui modélise linéairement le nombre coefficient non-nuls dans les résidus transformés et quantifiés avec le débit, et qui permet de réaliser des régulations de débit peu complexes. Après validation du modèle, nous avons conçu un premier algorithme de contrôle de débit au niveau bloc en utilisant cette approche. Pour chaque bloc et son débit cible associé, notre méthode estime de façon précise le paramètre de quantification (QP) optimal à partir des blocs voisins, en limitant l'erreur de débit sous les 4%. Puis, nous avons proposé un modèle d'estimation déterministe du p-domaine qui évite l'utilisation de tables de correspondance et atteignant une précision d'estimation supérieure à90%. Deuxièmement, nous avons investigué l'impact du ratio de débit entre les couches d'un codeur SHVC sur ses performances de compression, pour la scalabilité spatiale, CGS et SOR vers HDR. En se basant sur les résultats de cette étude, nous avons élaborés un algorithme de régulation de débit adaptatif. La première approche proposée optimise les gains de codage en choisissant dynamiquement le ratio de débit optimal dans un intervalle prédéterminé et fixe lors de l'encodage. Cette première méthode a montré un gain de codage significatif de 4.25% par rapport à une approche à ratio fixe. Cette méthode a été ensuite améliorée en lui ajoutant des contraintes de qualité et de débit sur chaque couche, au lieu de considérer un in tervalle fixe. Ce second algorithme a été testé sur le cas de diffusion de programme HD/UHD ct de déploiement de se1vices UHDI-P1 vers UHD 1-P2 (cas d'usage DVB), où elle permet des gains de 7.51% ct 8.30% respectivement. Enfin, le multiplexage statistique de programmes scalable a été introduit et brièvement investigué. Nous avons proposé une première approche qui ajuste conjointement le débit global attribué à chaque programme ainsi que le ratio de débit, de façon à optimiser les performances de codage. De plus, la méthode proposée lisse les variations et l'homogénéité de la qualité parmi les programmes. Cette méthode a été appliquée à une base de données contenant des flux pré-encodés. La méthode permet dans ce cas une réduction du surcoût de la scalabilité de 11.01% à 7.65% comparé à l'encodage a débit et ratio fixe, tout en apportant une excellente précision et une variation de qualité limitée

    Stratégies d'encodage pour codeur vidéo scalable

    Get PDF
    High Efficiency Video Coding (HEVC/H.265) est la dernière norme de compression vidéo, finalisée en Janvier 20 13. Son extension scalable, SHVC, a été publiée en Octobre 2014 et supporte la scalabilité spatiale, en gamut de couleur (CGS) et même en norme de compression (AVC vers HEVC). SHVC peut être utilisée pour l'introduction de nouveaux services, notamment grâce à la rétrocompatibilité qu'elle apporte par la couche de base (BL) et qui est complétée par une couche d'amélioration (BL+EL) qui apporte les nouveaux services. De plus, SHVC apporte des gains en débit significatifs par rapport à l'encodage dit simulcast (l'encodage HEVC séparés). SHVC est considérée par DVB pour accompagner l'introduction de services UHD et est déjà incluse dans la norme ATSC-3.0. Dans ce contexte, l'objectif de la thèse est la conception de stratégies de régulation de débit pour les codeurs HEVC/SHVC lors de l'introduction de nouveaux services UHD. Premièrement, nous avons étudié l'approche p-domaine qui modélise linéairement le nombre coefficient non-nuls dans les résidus transformés et quantifiés avec le débit, et qui permet de réaliser des régulations de débit peu complexes. Après validation du modèle, nous avons conçu un premier algorithme de contrôle de débit au niveau bloc en utilisant cette approche. Pour chaque bloc et son débit cible associé, notre méthode estime de façon précise le paramètre de quantification (QP) optimal à partir des blocs voisins, en limitant l'erreur de débit sous les 4%. Puis, nous avons proposé un modèle d'estimation déterministe du p-domaine qui évite l'utilisation de tables de correspondance et atteignant une précision d'estimation supérieure à90%. Deuxièmement, nous avons investigué l'impact du ratio de débit entre les couches d'un codeur SHVC sur ses performances de compression, pour la scalabilité spatiale, CGS et SOR vers HDR. En se basant sur les résultats de cette étude, nous avons élaborés un algorithme de régulation de débit adaptatif. La première approche proposée optimise les gains de codage en choisissant dynamiquement le ratio de débit optimal dans un intervalle prédéterminé et fixe lors de l'encodage. Cette première méthode a montré un gain de codage significatif de 4.25% par rapport à une approche à ratio fixe. Cette méthode a été ensuite améliorée en lui ajoutant des contraintes de qualité et de débit sur chaque couche, au lieu de considérer un in tervalle fixe. Ce second algorithme a été testé sur le cas de diffusion de programme HD/UHD ct de déploiement de se1vices UHDI-P1 vers UHD 1-P2 (cas d'usage DVB), où elle permet des gains de 7.51% ct 8.30% respectivement. Enfin, le multiplexage statistique de programmes scalable a été introduit et brièvement investigué. Nous avons proposé une première approche qui ajuste conjointement le débit global attribué à chaque programme ainsi que le ratio de débit, de façon à optimiser les performances de codage. De plus, la méthode proposée lisse les variations et l'homogénéité de la qualité parmi les programmes. Cette méthode a été appliquée à une base de données contenant des flux pré-encodés. La méthode permet dans ce cas une réduction du surcoût de la scalabilité de 11.01% à 7.65% comparé à l'encodage a débit et ratio fixe, tout en apportant une excellente précision et une variation de qualité limitée.High Efficiency Video Coding (HEVC/H.265) is the latest video coding standard, finalized in Janua1y 2013 as the successor of Advanced Video Coding (AVC/H.264). Its scalable extension, called SHVC was released in October 2014 and enables spatial, bitdepth, color-gamut (CGS) and even standard scalability. SHVC is a good candidate for introducing new services thanks to backward compatibility features with legacy HEVC receivers through the base-layer (BL) stream and next generation ones through the BL+EL (enhancement layer). In addition, SHVC saves substantial bitrate with respect to simulcast coding (independent coding of layers) and is also considered by DVB for UHD introduction and included in ATSC-3 .0. In this context, the work of this thesis aims at designing efficient rate-control strategies for HEVC and its scalable extension SHVC in the context of new UHD formats introduction. First, we have investigated the p-domain approach which consists in linking the number of non-zero transfonned and quantized residual coefficients with the bitrate, in a linear way, to achieve straightforward rate-control. After validating it in the context of HEVC and SHVC codings, we have developed an innovative Coding Tree Unit (CTU)-level rate-control algorithm using the p-domain. For each CTU and its associated targeted bit rate, our method accurately estimates the most appropriate quantization parameter (QP) based on neighborhood indicators, with a bit rate error below 4%. Then, we have proposed a deterministic way of estimating the p-domain model which avoids the implementation of look-up tables. The proposed method enables accurate model estimation over 90%. Second, we have explored the impact of the bitrate ratio between layers on the SHVC performance for the spatial, CGS and SDR-to-HDR scalability. Based on statistical observations, we have built an adaptive rate control algorithms (ARC). We have first proposed an ARC scheme which optimizes coding performance by selecting the optimal ratio into a fixed ratio inte1val, under a global bitrate instruction (BL+EL). This method is adaptive and considers the content and the type of scalability. This first approach enables a coding gain of 4.25% compared to fixed-ratio encoding. Then, this method has been enhanced with quality and bandwidth constraints in each layer instead of considering a fixed interval. This second method has been tested on hybrid delivery of HD/UHD services and backward compatible SHVC encoding of UHDI -PI /UHDI -P2 services (DVB use-case) where it enables significant coding gains of 7.51% and 8.30%, respectively. Finally, the statistical multiplexing of SHVC programs has been investigated. We have proposed a first approach which adjusts both the global bit rate to allocate in each program and the ratio between BL and EL to optimize the coding performance. In addition, the proposed method smooths the quality variations and enforces the quality homogeneity between programs. This method has been applied to a database containing pre-encoded bitstreams and enables an overhead reduction from 11.01% to 7.65% compared to constant bitrate encoding, while maintaining a good accuracy and an acceptable quality variations among programs

    Transform Competition for Temporal Prediction in Video Coding

    No full text

    Optimal Bitrate Allocation in the Scalable HEVC Extension for the Deployment of UHD Services

    No full text
    International audienceUltra high definition (UHD) is the latest trend in broadcasting area, which enables new services with 3840×2160 resolution and comes with enhanced color-gamut, frame-rate, dynamic range, and better audio system compared to the currently deployed HD services. The UHD format for broadcasting is already under standardization in the digital video broadcasting consortium which plans to introduce UHD services in three phases. The increase in data brought by these services requires more efficient compression and transmission systems. The recent scalable video coding standard scalable High Efficiency Video Coding (SHVC) is a promising candidate to handle these three phases while ensuring backward compatibility. Moreover, delivering such contents over networks needs an accurate control of the output bitrate from encoder engines to match rigid constraints on bandwidth and QoS. Several contributions have already been proposed to jointly encode scalable stream, but without considering the impact of bitrate ratio between layers on the compression performance. In this paper, the impact of the bitrate ratio between layers on the coding performance is first investigated for several UHD scalable schemes including spatial, color-gamut, and SDR-to-HDR scalability in SHVC. Based on this investigation, an adaptive rate control algorithm which dynamically allocates the bitrate between two layers is proposed to optimize the performance under quality and bitrate constraints. The algorithm has been implemented in the SHVC reference software (SHM9.0) and tested over 15 video sequences under two industrial usecases. The performance shows an average BD-BR improvement of 7.51% and 3.35% for these two use-cases

    Editorial Real-Time Implementation of VVC Standard for Consumer Electronic Devices

    No full text
    International audienc

    Adaptive Rate Control Algorithm for SHVC: Application to HD/UHD

    No full text
    International audienceScalable video coding consists in compressing the video sequence into a layered bitstream where each layer refers to different spatial, temporal or quality representation of the video. Scalability enables compression gain compared to the simulcast encoding of layers thanks to inter-layer predictions. The scalable HEVC extension (SHVC) is the latest scalable technology promising up to 30\% bitrate gains under the common test conditions, defined by JCT-VC. These conditions do not consider UHD and use fixed quantization step, which is not relevant in operational environment. In this paper, we propose an innovative adaptive rate control algorithm for SHVC. We consider HD as a base layer and UHD as an enhancement layer, with a constant global bitrate and a dynamic bitrate ratio adjustment between layers. The proposed algorithm is evaluated on a UHD data set where enables on average a BD-BR gain of 4.25% compared to a fixed-ratio encoding

    Toward Optimal Bitrate Allocation in the Scalable HEVC Extension: Application to UHDTV

    No full text
    International audienceScalable video encoders compress a single video sequence to produce a bitstream composed of several layers, corresponding to different temporal, spatial and quality representations of the input video sequence. This technique improves the coding efficiency compared to simulcast encoding of each representation by exploiting additional correlations through inter-layer predictions. The latest scalable video coding standard SHVC --the extension of the recent HEVC standard-- announces up to 30% bandwidth reduction. However, this gain is valid under the common test conditions, established by the JCT-VC expert group, which are not necessarily relevant in broadcasting environment and do not include video sequences in UHD resolution. In this paper, we expose the results of an extended study about the optimum gains that scalability can bring in concrete broadcast use-cases. Indeed, we consider SHVC with HDTV/UHDTV as spatial enhancement layers. Then, we search the optimum balance of layers' dedicated bitrates in sense of coding efficiency and objective quality for different UHDTV video sequences and use-cases
    corecore